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1This inattention to dimensional analysis begins with introductory economics (and
business) textbooks, in which function examples usually ignore dimensions. For example,
textbooks routinely include demand and supply functions such as qd = 10 - 3p or qs = 2 +
5p, with no mention that 10, -3, 2, and 5 all are parameter values that must have dimen-
sions, such that the function’s left side dimension is matched by the function’s right side
dimension. In this case, the dependent variable has quantity dimension “quantity unit”
(e.g., bushels), and the independent variable has price dimension “monetary unit / quan-
tity unit” (e.g., dollars/bushel). Hence the freestanding additive parameters 10 or 2 each
must have the dimension “quantity unit,” and the (logical) slope parameters -3 or 5 each
must have the dimension “(quantity unit)2 / monetary unit.” Far better is to introduce
functions in a more general form, such as qd = D(p) = d0 + d1p (where d1 < 0) and qs =
S(p) = s0 + s1p, and then discuss parameter dimensions and suggest reasonable parame-
ter values.
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William Barnett’s (2004) critique of mathematics in economic analy-
sis, “Dimensions and Economics: Some Problems,” claims that
economics almost always uses functions and equations without

paying any attention to their variable and parameter dimensions and units. By
casual observation, that criticism appears often to be true,1 and it applies not
only to functions and equations but also to relations of all sorts, including
inequalities.

Following his introduction, Barnett (p. 95) makes his main case in three
sections, using two different examples: The Cobb-Douglas production func-
tion, whose parameters he sees as having (1) “meaningless or economically
unreasonable dimensions” (p. 96) and (2) “inconstant” dimensions (p. 97). A
macroeconomic model, whose technology (production) function’s parameters
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he sees as either (3) “meaningless,” or else as defining a function that relates
output hours to labor input hours, which yields “no net production.” Either
way, the model is “not defensible” (pp. 97–98).

Professor Barnett’s fourth and fifth sections, “Discussion” (pp. 98–99) and
“Conclusions” (p. 99), state that

[Modern economics’] failure to use dimensions consistently and correctly
in production [and other economic] functions . . . are both critical and
ubiquitous—they afflict virtually all mathematical and econometric mod-
els of economic activity. . . . [T]he failure to use dimensions consistently
and correctly . . . render the models so afflicted virtually worthless. . . .

[Economics has been “emulating” the methods of “physicists and engi-
neers,” but has “failed to emulate” them in] the consistent and correct use
of dimensions. This is an abuse of mathematical/scientific methods. Such
abuse invalidates the results of mathematical and statistical methods
applied to the development and application of economic theory. . . . [I]t is
a continuing problem and one found in the leading mainstream journals
(and textbooks). . . . [U]nless and until this changes, and economists con-
sistently and correctly use dimensions in economics, if such is possible,
mathematical economics, and its empirical alter ego, econometrics, will
continue to be academic games and “rigorous” pseudosciences. . . .

This is not to say that there have not been advances in economic under-
standing by the neoclassicals, but rather to argue that mathematics is nei-
ther a necessary nor a sufficient means to such advances. Whether it even
is, or can be, a valid means to such advances is a different issue.

Professor Barnett makes some good points in his critique of the use of
mathematics in economics. Criticism of mathematical economics, however, is
hardly a novel topic among Austrian economists (Mises 1977; 1966, pp.
350–57).2 And the misuse and abuse of mathematics in contemporary eco-
nomics has been noticed, denounced, and lamented even by prominent main-
stream economists (see Blaug 1998, pp. 11–34, and his citations). What is
novel in Barnett’s article is his claim that dimensional errors in the mathe-
matical functions used in economics are “ubiquitous,” which makes a lot of
mainstream economic models “worthless.” Although much and perhaps most
contemporary neoclassical economics may be worthless, that assessment has
long preceded Barnett’s dimensional issue. 

In our judgment, Barnett’s discussion of the Cobb-Douglas production
function and of the macroeconomic model merits further examination. That
economics often ignores dimensions and units does not necessarily mean that
unstated but implied dimensions and units are wrong or invalid.
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For evidence that economists (including Maurice Allais, Hans Brems, Nicholas
Georgescu-Roegen, and less completely, Gardner Ackley and Kenneth Boulding) have paid
at least some attention to dimensional analysis, see De Jong (1967, pp. 1–3), and his ref-
erences to help from other economists (1967, ix–x).

2See also Leoni and Frola (1977, including their note 3, p. 109, which has quotations
and references from Henry Hazlitt [1959]).



For each of Professor Barnett’s three sections discussing his specific exam-
ples, our comments are in sections numbered 1, 2, and 3, respectively. We
conclude with some “Final Thoughts,” about the use of mathematics in eco-
nomics.3

1. COBB-DOUGLAS PARAMETER DIMENSIONS THAT ARE NOT MEANINGLESS,
ALTHOUGH SOME PARAMETER VALUES ARE UNREASONABLE

Professor Barnett writes the two-input Cobb-Douglas production function in
the usual notation, as Q = AKαLβ. He defines Q as widget output per elapsed
time period, K as machine hours used per elapsed time period, and L as labor
hours used per elapsed time period. Exponents α and β are pure number
(point) elasticities, the percentage changes in output per percentage change
in either machine hours or labor hours, respectively. Symbol A “may be either
a constant or a variable.” Solving for A gives A = Q/KαLβ, which therefore has
the dimension units
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3We do not address the publication issues that Professor Barnett raises in his Adden-
dum and Appendix (pp. 99–104).

4A parameter is “an arbitrary constant or a [exogenous] variable in a mathematical
expression, which distinguishes various specific cases. . . . Also, the term is used in speak-
ing of any letter, variable, or constant, other than the coordinate variables.” (James 1968,
p. 263; emphasis added). A coordinate is “one of a set of numbers which locate a point in
space” (p. 80). Hence a function’s coordinate variables are its dependent and independent
variables, because the function—using its parameters’ values and dimensions—maps the
function’s independent variables’ domain into the function’s dependent variable’s range.
Only variables get mapped; parameters themselves do not get mapped, because they
(together with the function’s specific functional form of linear, polynomial, multiplicative,
exponential, etc.) help do the mapping.

widgets / elapsed-time

α β

or

(1b)
widgets⋅( )elapsed-time (α+ β -

[ ]machine-hours α ⋅ [ ]labor-hours β

So far, so good—except for a minor quibble: we would describe A, α, and β all
as “parameters.” A quick-and-dirty definition of “parameter” might be “vari-
able (changeable) constant”—a constant whose value (magnitude) can change,
but only exogenously. Therefore, parameters are not coordinate variables.4

Professor Barnett then argues that: “If α = β = 1, then the dimensions of
Kα, Lβ, and Q . . . are meaningful.” But for the dimension of A

to be meaningful, requires, at a minimum, that the product of machine-
hours and man-hours is meaningful, a dubious proposition indeed. [Why?]
However, even if the dimensions are meaningful in this case, they are eco-



nomically unreasonable. For, if α = β = 1, the marginal products of both K
and L are positive constants (the Law of [Eventually] Diminishing Returns
is violated) and there are unreasonably large economies of scale—a dou-
bling of both inputs, ceteris paribus, would quadruple output. (p. 96)

But if his argument here shows anything, it shows not that the dimensions
of machine-hours and man-hours are unreasonable, but that his assumed val-
ues of α and β are unreasonable. If increasing (or constant) returns to either
a single input or to scale are unreasonable (especially since the Cobb-Douglas
function does not let initial increasing returns switch later to decreasing
returns), the solution is to require α < 1 and β < 1. But Professor Barnett does
not accept that solution.

His argument continues: “If it is not true that α = β = 1, then either α or β,
or both, have noninteger values or integer values of two or greater. Noninteger
values of α or β, or both, result in” roots, 

for example, (man-hours/year)0.5 or (man-hours/year)1.5 for Lβ, and simi-
larly for Kα. But the square roots of man-hours and of years are meaning-
less concepts, as are the square roots of the cube of man-hours and the cube
of years. Also, integer values of two or greater for α or β, or both, result in
such units as . . . (man-hours/year)2 or (man-hours/year)3. . . . [which] are
meaningless concepts, . . . and similarly for machine-hours. (The units of A
are even more meaningless, if that is possible.) (p. 96)

Professor Barnett surely is comfortable with noninteger fractional values
of α and β when thinking of them as elasticities (percentage changes). So
when the same α and β are roots or powers of man-hours or capital-hours or
years, why he sees the results as meaningless is not at all clear. His assertions
are not explanations. In the Cobb-Douglas function, α < 1 and β < 1 roots are
fractional elasticities that are neither unrealistic nor meaningless. Cobb-Dou-
glas α > 1 and β > 1 powers do generate invariably increasing returns that are
unrealistic (for large input quantities), but not meaningless: we do understand
their implications.

Professor Barnett apparently has overlooked that the purpose of any func-
tion’s parameters—be it a function in economics or physics or engineering or
pure mathematics or any other discipline—is to help describe the relationship
between the function’s dependent variable and its independent variables,
including their dimension units. Therefore, a function’s parameter dimen-
sions (and values) simply are whatever they need to be (including roots and
powers) to describe the relationship fully and accurately—including that the
left and right side dimensions must match.

Variables must have (understandable) dimensions. Parameters may or
may not have dimensions. If they do not, they are pure numbers (not neces-
sarily invariant constants). If they do, their dimensions need not be under-
standable (although it is nice if they are). Instead, parameter dimensions’ only
requirement is that they describe the relationship between the function’s
dependent and independent variables’ dimensions.
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In the Cobb-Douglas production function, parameter A has dimensions
that force the function’s left and right side dimensions to match. More gener-
ally, parameter A has dimensions that the function needs to describe its
assumed relationship between output and input variables—for example, to
allow the function’s α and β parameters to be the percentage change in out-
put that results from a percentage change in real capital or labor input. So
unless one rejects the idea that output quantity depends on input quantities,
how can one reject the ideas that the percentage change in output quantity
could depend on the percentage change of input quantity, and that the per-
centage relationship could be less than one? Of course, one could reject—quite
reasonably—the Cobb-Douglas assumption that output-input elasticities are
constant regardless of input quantities, but that is not what Professor Barnett
is doing. Instead, he claims that any fractional values for the Cobb-Douglas
function’s α and β parameters are “meaningless” or “economically unreason-
able” simply because they are roots of input quantities. To us, that claim
makes no sense, given the role of parameters in defining a production func-
tion’s relationship between output and input.

2. COBB-DOUGLAS PARAMETER DIMENSIONS THAT ARE INCONSTANT

Professor Barnett begins his argument that the Cobb-Douglas function’s
parameter (A, α, and β) dimensions are not constant and therefore “nonsen-
sical” (p. 97), by stating that 

this [inconstant dimensions] problem consists in the same constant or
variable having different dimensions, as if velocity were sometimes meas-
ured in meters per second and other times measured in meters only or in
meters squared per second. (p. 97)

He then notes that in Newtonian physics, “a force (F) exerted on a body
may be measured as the product of its mass (m) times its acceleration (a); i.e.
F = m ⋅ a, . . . [e.g.,] the units of F are kilograms ⋅ meters/(second2).” Then by
“Newton’s law of universal gravitation,” the force of gravity between two
objects that are r distance apart and of mass m and m′ respectively, can be
written F = G ⋅ (mm′/r2), where G is the gravitational constant. Solving for G
gives G = F/(mm′/r2), so given the units of F, G has the units
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kilograms ⋅(meters / second 
=

meters

kilograms / meters kilograms ⋅second22 2

2 3)

And: “This result has been invariant for countless measurements of G over the
past three centuries: regardless of the magnitude [of G], the dimensions have
always been distance3/mass ⋅ (elapsed time)2.”

We have no problem with any of that. But note that in the function for G,
the right hand side contains three coordinate variables—the Force attracting
the two objects, the Mass of each of the two objects, and the Distance between



the two objects—and no variable parameters. (The exponents on Mass, on
Time, and on Distance are not variable parameters because they cannot vary:
they are constant numbers given by the definitions of Force, Mass, and Accel-
eration. We might denote the exponent on distance as, say, α = 2, but there is
no point in doing so because the logic of the model does not allow it to vary:
either α = 2, or the model totally fails.)

Having introduced this gravity model, Professor Barnett compares its 

constancy of the dimensions—with the results of measurements of a 2-
input, CD production function. . . . Invariably, alternative estimates of α,
β, and A differ. This is not surprising, but . . . because A has both magni-
tude and dimensions, different values of α and β imply different dimen-
sions for A, such that, even though the dimensions in which Q, K, and L
are measured and are constant, the dimensions of A are inconstant. . . . If
. . . α and β are measured as 0.5 and 0.5, respectively, then the units of A
are wid/(manhr0.5 ⋅ caphr0.5). However, if . . . α and β are measured as 0.75
and 0.75, respectively, then the units of A are wid ⋅ yr0.5/(manhr0.75 ⋅
caphr0.75). (p. 97)

Actually, however, for all values of α and β, the dimensions of A are invari-
ant, and remain defined by (1a) or (1b) above.5 The exponent on “yr” (elapsed
time) always is α + β - 1, the exponent on “caphours” (machine-hours) always
is α, and the exponent on “manhr” (labor-hours) always is β. Different values
of α and β change only the magnitude of A.

In the gravity model and in the Cobb-Douglas production function model,
the estimations or measurements are very different conceptually. In the grav-
ity model, regardless whether its left-side variable is F or G, all symbols other
than G are known values; the only unknown is G. In the Cobb-Douglas model,
the magnitudes of A, α , and β all are unknown, and are estimated as a “best
fit” to known data for output quantity q and for input quantities K and L. And
while the gravity model applies to the theoretically identical quantitative
behavior of objects in one universe, the Cobb-Douglas model—despite some
severe nondimensional theoretical limitations (which we mention later)—has
been used (either heroically or recklessly) to describe the behavior of widely
disparate enterprises: single firms in entirely different industries (peanut
farming, . . . internet services, . . . pharmaceuticals invention and production;
nonprofit private organizations; local, state, and national governments—and
price-weighted aggregate data for multi-output enterprises, entire industries,
and even entire economies.6
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5De Jong writes (1967, p. 19, n. 1): “The dimension of a certain variable tells us how
the numerical value of that variable changes when the units of measurement are subjected
to changes.” The same statement would apply to parameters.

6Of course, as has long been understood (Baumol 1977, pp. 350–53; see also chaps.
11, 24), price-weighted aggregate quantity data raises serious practical and ultimately
insoluble theoretical and logical difficulties, as Professor Barnett points out (p. 96, n. 7).



Moreover, even in what may appear to be the “same” situation, say when
a particular firm’s output of a particular product changes over time, it is nor-
mal for “same situation” production function parameter estimates to change
over time. Production processes are the result of human knowledge and deci-
sions. Humans are not Pavlov’s dogs, but acting beings, and they develop new
knowledge and forget old knowledge even when it is useful.

Economic relations change as individual understanding of those relations
changes. In contrast, the world of Newtonian physics does not change (at least
not rapidly enough to notice without incredibly precise instrumentation), and
it does not change because people come to understand it better. Gravity now
works as gravity did before Newton was hit by the apple, and as it did millions
of years ago. 

If the elasticity of output with respect to capital or labor input were even
approximately constant for all the products that have been studied using the
Cobb-Douglas (or any specific) production function, or constant over sub-
stantial periods of time for the same product, that would be amazing—and
rather than a cause for rejoicing, it would be cause for suspecting that some-
one was cooking either the estimating algorithm or the data or both.

When Professor Barnett compares the absurdity of measuring velocity
“sometimes in meters per second and other times in meters only or in meters
squared per second” to estimating different values for A, α, and β, he forgets
that we define velocity as meters per second and acceleration as meters per
second squared because any other dimensions would be logically wrong and
would make no sense. In acceleration, the “2” exponent on “seconds” is an
invariant constant that comes from the meaning of acceleration: change in the
rate of change; change in meters per second, per second. (A less obvious ver-
sion of that statement is that the “2” results from a mathematical operation:
taking the derivative of velocity’s definition, with respect to time.) But in spe-
cific economic functions, including production functions, parameters such as
A, α, and β are not defined invariant constants: we measure them as variable
parameters that of course change to fit different situations and different time
periods, as they are expected and supposed to do.

Specific production functions are not part of the realm of pure economic
theory, but are tools of historical analysis. To demand constancy for a pro-
duction function’s parameter values simply makes no economic sense.

Professor Barnett’s analysis has not shown us any dimensional errors in
the Cobb-Douglas production function.7 However, the Cobb-Douglas function
does have severe nondimensional limitations.8
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7For a much more formal and “philosophical” analysis of Cobb-Douglas (and con-
stant elasticity of substitution) type functions, see De Jong (1967, pp. 34–50; for noninte-
ger exponents, pp. 46–50). Our discussion of the Cobb-Douglas function has treated it as
a “fundamental equation,” analyzed using the “traditional method” (pp. 34–37).

8We discuss these nondimensional limitations in Appendix A.



3. MACROECONOMIC EXAMPLE

After his Cobb-Douglas discussion, Professor Barnett turns to a macroeco-
nomic model (pp. 97–98), cited only as an unspecified paper from “a recent
issue of a leading English-language economics journal.” He does not tell us
much of what the model is about.

His quotations from that paper do tell us that the model has a represen-
tative household whose complete present utility function includes the sum of
an infinitely long stream of discounted future per-period work-utility func-
tions, H(Nt,Ut), each dependent on that period’s hours worked Nt and also on
work effort Ut.

The model has also “a continuum of firms distributed equally on the
[closed] unit interval, . . . indexed by i ∈ [0,1]” (p. 97). Since any continuum
between any two points on a line contains an infinite number of points, this
model has an infinite number of firms (p. 98).

Also, each firm “produces a differentiated good with a technology [pro-
duction function] Yit = ZtLit

α. Li may be interpreted as the quantity of effective
labor input used by the firm, which is a function of hours and effort: Lit =
Nit

θUit
1-θ where θ ∈ [0,1].”9 And “Z is an aggregate technology index [appar-

ently common to all firms], whose [random] growth rate is assumed to follow
an independently and identically distributed (i.i.d.) process.” There is a bit
more detail about the Zt technology index,10 but we have enough for Barnett’s
criticisms of this model.

Professor Barnett’s last quotation describing the model is that 

“in a symmetric equilibrium all firms will set the same price Pt and choose
identical output, hours, and effort levels Yt, Nt, Ut. Goods market clearing
requires . . . [Barnett’s ellipses] Yit = Yt, for all i ∈ [0,1], and all t.” Fur-
thermore, the model yields “the following reduced-form equilibrium rela-
tionship between output and employment: Yt = AZtNt

φ.” (p. 98)

Barnett’s Critique of the Macroeconomic Model

For this model, Professor Barnett has three major criticisms, 

conclusions that can be drawn from this model. . . . (1) [T]he number of
firms and the number of households is identical, and is equal to infinity;
(2) the quantity of each input used by each firm is identical to the quan-
tity of each input provided by each household; and, (3) there are an infi-
nite number of differentiated goods, each of which is identical to every
other good. 
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9Although here θ is defined over a closed interval, θ ∈ [0,1], Barnett’s footnotes 15
and 16 (p. 98) define θ over an open interval, θ ∈ (0,1); we think the notes probably are
correct.

10The process is “{ηt}, with ηt ~ N(0, sz
2). Formally, Zt = Zt-1 ⋅ exp(ηt).” Barnett, p. 97,

and also his footnote 15 (p. 98). That is, although in any period Zt has a given value (equal
for all firms), from period to period its value varies randomly: each Zt equals the preced-
ing period’s Zt-1 times an exponential function of ηt, which follows a normal distribution
with mean of 0 and variance of sz

2.



He notes that item (2) does not imply that each firm’s inputs are supplied by
only one household (p. 98).

Given a continuum of firms, the “number” of firms is infinite But trouble
arises when he assumes that the infinite number of firms is the number n, and
then calculates that since (in symmetric equilibrium) each firm uses Nt labor
hours and Ut labor effort, the total labor hours and labor effort used are nNt
and nUt. Given that Nt and Ut also represent the amount of labor and effort
supplied by a single representative household, he concludes that the infinite
number of firms must equal the infinite number of households, or else there
would be excess demand or supply for labor hours and effort11 in this equi-
librium.

This conclusion is invalid, because it relies on “infinite” being an integer
number. But “infinite” is not a number, and neither is “infinity.”12 Moreover, a
continuum includes both integer and irrational real numbers, and contains an
uncountable (nondenumerable) infinity (distinguished from a countable
[denumerable] infinity) of points.13 So a “continuum of firms” does not imply
a countable number of firms to which the number of households can be com-
pared. For Barnett’s first “conclusion” about this model, that the number of
firms equals the number of households, his reasoning fails.

For his second “conclusion” about this model, that the inputs (labor-hours
and labor-effort) used by each firm equal the inputs supplied by each house-
hold, his reasoning fails again, because it depends on the number of firms
and households being equal. But his second “conclusion” does tend to be sup-
ported by the model’s use (in symmetric equilibrium) of the same symbols (Nt

DIMENSIONS AND ECONOMICS: SOME ANSWERS 53

11In Barnett’s words (p. 98): “Assume, arguendo, that the (infinite) number of firms
is given by n. Then . . . the total hours used [by firms] is nNt and the total effort level used
is nUt. . . . [U]nless there are exactly n households providing nNt total hours and nUt total
level of effort, either the firms are using more hours than the households are actually
working, or they are using less. The same can be said for the level of effort.”

12From Courant and Robbins (1969; all emphasis in the original): 

It is, however, sometimes useful to denote such expressions [created by
(taking the limit of) something divided by zero] by the symbol 4 (read,
“infinity”) provided that one does not attempt to operate with the sym-
bol 4 as though it were subject to the ordinary rules of calculation with
numbers. (p. 56) . . . The sequence of all positive integers . . . is the first
and most important example of an infinite set. . . . But in the passage
from the adjective “infinite,” meaning simply “without end,” to the noun
“infinity,” we must not make the assumption that “infinity” . . . can be
considered as though it were an ordinary number. We cannot include the
symbol 4 in the real number system and at the same time preserve the
fundamental rules of arithmetic. (p. 77)

13From Courant and Robbins (1969, pp. 79–83, see also pp. 77–78; all emphasis in the
original), “The Denumerability of the Rational Numbers and the Non-Denumerability of
the Continuum”: “The set of all real numbers, rational and irrational, is not denumerable.
In other words, the totality of real numbers presents a radically different and, so to speak,
higher type of infinity than that of the integers or of the rational numbers alone” (p. 81).



and Ut) for each firm’s input use and for the representative household’s input
supply. That notation puzzles us a bit.

His third “conclusion” about this model has two components: first, that
the number of goods is infinite; second, that the goods are differentiated yet
identical. The first component does follow directly from the model’s assump-
tions of a “continuum of firms” each producing only one good, but the “infi-
nite” number of firms and goods is uncountable. The second component’s
claim that the goods are differentiated yet identical is difficult to understand,
particularly without reading the original paper. One reconciliation would be
for the goods to be differentiated without using different production
processes—for example, different color but otherwise identical bicycles. Our
preferred hypothesis—which is consistent with where the words “differenti-
ated” and “identical” appear in Barnett’s quotations from the original paper—
is that in disequilibrium, each firm produces a differentiated product, and
then symmetric equilibrium forces all firms to produce identical outputs, pro-
duced using identical inputs and selling at the same price.

Barnett’s own argument for his third “conclusion” is entirely different (p.
98). It results from his dimensional analysis of the model’s output and
employment: Yt = AZtNt

θ (discussed in our next section). He argues that 

because . . . A and Zt are both dimensionless magnitudes, Yt must have the
same dimensions as Nt

φ. The dimension of Nt is hours; and φ is a positive,
dimensionless, constant. Therefore, the dimensions of Yt are hrsφ. . . . [If]
φ ≠ 1, the dimension of Yt . . . is meaningless.14 If φ = 1, . . . the dimension
of Yt is the same as that of Nt, hrs. However, in that case, . . . the output
hours are less than, equal to, or greater than the input hours as AZt is less
than, equal to, or greater than one (1). But if output is measured in hours,
then the output hours cannot be greater than or less than the input hours;
i.e., AZt ≡ 1 and Yt ≡ Nt. . . . [T]here is no net production. . . . [E]ach of the
n differentiated goods produced by the n firms consists of homogeneous
hours. Surely, this model is not defensible. (p. 98; emphasis added)

Thus Professor Barnett’s dimensional analysis extends his third conclu-
sion, from firms producing identical outputs to firms producing either mean-
ingless outputs, or else homogeneous outputs all measured in hours, with the
devastating consequence of no net production.15 However, we are not con-
vinced that Zt and A are dimensionless pure numbers.
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14This apparently is a reprise of his argument against the Cobb-Douglas production
function (in our main text above, on page 48), that roots and powers of economic variables
and parameters are meaningless.

15Here is an aside that may, perhaps, misrepresent Professor Barnett’s point: Even if
both sides of a production function have dimension units of elapsed time, we see no prob-
lem regardless whether output hours are less than, equal to, or greater than input hours.
The issue should be whether net value production occurs, and that depends not only on
the quantities but also on the values (prices) of the outputs and inputs. Our guess is that
for any airline, output time of passenger flight hours conceivably is less than input hours
(for pilots, flight attendants, baggage handlers, reservations and boarding staff, and espe-
cially maintenance personnel, and don’t forget air traffic control). But in any case, net
value production can and does occur.



CONVENTIONALLY CALCULATED DIMENSIONS

Before examining Professor Barnett’s dimensional analysis of this model, first
consider the conventionally calculated dimension units for each firm’s tech-
nology or production relationships, using the previously stated principle that
a function’s parameter values and dimensions simply are whatever they need
to be to describe the relationship.

In the technology function Yit = ZtLit
α, substituting Lit = Nit

θUit
1-θ gives Yit

= Zt[Nit
θUit

1-θ]α = Zt[Nit
αθUit

α(1-θ)]. Let the firm’s output Yit be widgets per
elapsed time period, Nit be labor-hours per elapsed time period, and Uit be
labor-effort per elapsed time period. We agree with Barnett (footnote 16, p.
98) that exponents α and θ (and also φ, used in our next paragraph) are “pos-
itive, dimensionless, constants” (pure numbers). But we think that to match
the dimensions of both sides of the firm’s technology or production relation-
ship, Zt must have dimension units
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(2a)

or

(2b)

widgets / elapsed-time

[labor-hours / elapsed-time]αθ ⋅ [labor-effort / elapsed-time] α (1-θ)

widgets (elapsed-time)(α−1)

[labor-hours] ⋅ [labor-effort]αθ

⋅

In the reduced-form solution for symmetric equilibrium, all firms produce
the same output quantity (which allows dropping the subscript identifying the
ith firm): Yt = AZtNt

φ. Before worrying about what A and φ are or where they
come from, consider the conventionally calculated dimension units for this
equilibrium relationship. Yt again is widgets per elapsed time period, and Nt
again is labor-hours per elapsed time period. And φ is a pure number (as in
Barnett; see our preceding paragraph). Then to match the dimensions of both
sides of this relationship, A must have dimension units

(3a)
widgets / elapsed-time

[widgets × (elapsed-time) (α−1)] ⋅ [labor-hours / elapsed-time] φ

[labor-hours] αθ ⋅ [labor-effort]α(1−θ)

or

(3b) [labor-hours / elapsed-time] (αθ−φ) ⋅ [labor-effort / elapsed-time] α(1−θ)

or

(3c) [labor-hours] (αθ−φ) ⋅ [labor-effort]α(1−θ)/ (elapsed-time) (α−φ)

But as noted above, Professor Barnett would not accept these dimension
calculations for either Zt or A. For him, “A and Zt are both dimensionless mag-
nitudes” (p. 98, n. 15).

He states that “Zt must be a positive, dimensionless, variable because ‘it is
an aggregate technology index’” (given its description copied and referenced
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16De Jong (1967, pp. 23–24) writes: 

Are not index numbers dimensionless products? The answer is: this may
well be so, but not necessarily. The answer “yes” or “no” depends upon
what is best adapted to the problem in hand. It is essential to realize
clearly that no simple “cookery book recipes” exist for this; the only
good guidance is a consideration of the setting of the economic problem
one wishes to analyze. For instance, if the economic problem is such that
we are just interested in the ratio between absolute prices at two points
of time, t′ and to′, nothing prevents us from considering this ratio as a
dimensionless entity. On the other hand, we may use dimensional analy-
sis as a device for checking an economic equation . . . , [which] invites
us to assign a dimension to every variable capable of such an assign-
ment, even if it happens to be a price index number; otherwise, no
dimensional check would be possible. (Emphasis in the original)

In this quotation, De Jong is discussing the Equation of Exchange. See also De Jong’s dis-
cussion (pp. 33–34) of a Gardner Ackley wage index problem, his discussion (pp. 6–23) of
basic primary and secondary dimension concepts, and his reference to Bridgman (p. 24,
n. 1).

in our footnote 10). But that description simply defines the probabilistic
change of Zt from Zt-1. Probabilistic change does not mean that the variable
that is changing must be dimensionless.

So we reject Professor Barnett’s claim that technology index Zt is dimen-
sionless.

In general, an index need not be dimensionless.16 An example of a dimen-
sioned index is in Irving Fisher’s equation of exchange (MV = PT). Each side’s
dimension must be the flow of dollars per time period (as Professor Barnett
correctly implies, p. 96, n. 8). But to get that to happen, price index P and
transactions quantity index T cannot both be pure dimensionless numbers.
Either one or the other must be dimensioned, as we explain in Appendix B.

As for parameter A, Professor Barnett writes 

we are given that: A ≡ [λn(1-θ)/λuθ]α(1-θ)/(1+σu); . . . and, λn, λu, σn, σu are
positive constants. . . . [They] are dimensionless from the context in which
they first appear: H(Nt, Ut) = (λnNt

1-σn / (1+σn)) + (λuUt
1-σu / (1+σu)). . . .

[And α and θ are pure, dimensionless, constants, as we agree.] Therefore,
A must be a positive dimensionless constant. (p. 98, n. 15)

Our analysis here is handicapped by not knowing why H(Nt, Ut) has this
specific functional form, what λn, λu, σn, and σu really are, and why Professor
Barnett thinks that all these positive constants need be pure dimensionless
numbers. Nevertheless, Professor Barnett’s argument does not persuade us.
Consider the preceding paragraph’s last equation. On the left side, H(Nt, Ut)
“measures the disutility from work” (recall Barnett’s first quotation from his
source), which suggests that the left side’s dimension is some measure of
disutils, or else a pure number that ranks less preferred combinations of labor



hours and effort—which Barnett (2003, pp. 42, 46, 48–55) might prefer to
“disutils.” On the right side, the only symbols that Barnett does not claim to
be dimensionless are Nt and Ut, which respectively have dimension units of
labor-hours and labor-effort per elapsed time period. So something else on the
right side—perhaps λn and λu—must have dimensions that “convert” labor-
hours and labor-effort per elapsed time period into either disutils or a pure
number. If so, A cannot be dimensionless.

Given the available information, we see no reason to abandon our dimen-
sions for Zt given in our (2a) and (2b), or our dimensions for A given in our
(3a) and (3b). We see no dimensional problems in the macroeconomic model
discussed by Professor Barnett.

FINAL THOUGHTS

Economists may not pay much attention to dimensional analysis, but that
does not mean that unstated but implied dimensions and units are wrong or
invalid. To us, Professor Barnett has not demonstrated his specific allegations
of dimensional errors. And he has not persuasively shown any serious prob-
lem—much less a fatal flaw—in contemporary mathematical economics,
caused by dimensional errors.

But our critique of Barnett’s diagnosis does not imply that we judge the
mathematical economics patient to be healthy. In contemporary mainstream
economics, there is plenty of misuse and abuse of mathematics that has noth-
ing to do with dimensional errors: a propensity to disregard fundamental ele-
ments of economic reality simply because they cannot be encapsulated in
mathematical models; the misuse of mathematics to foster the illusion that
economists can provide decision makers with information that no individual
mind can possess; and disguising normative judgments as being positive con-
clusions of so-called welfare economic analysis (Boettke 1997 and Rothbard
1956).

We do not share, however, the implacable hostility of some Misesians to
the use of mathematics in economics. Some economists find that mathemat-
ics gets in the way of their thinking, in which case they shouldn’t use mathe-
matics in their thinking process. Other economists find that mathematics
helps them to see variables and effects that they may otherwise overlook; to
better distinguish endogenous from exogenous variables;17 and to avoid
deductive errors.18 After clarifying their thoughts, sometimes they can follow
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17It is easy to go astray in verbal-logical analysis by improperly treating as exogenous,
a variable that is endogenous: for example, implicitly treating (real) income as an exoge-
nous variable while deriving the labor supply response to a wage change. See Gonzalez
(2000).

18Those same economists can, of course, find mathematics not useful for thinking
about some issues, despite finding it useful for other issues.



Alfred Marshall’s famous advice to “Burn the mathematics.”19 But on other
occasions they should publish rather than burn the mathematics: a lot of
obscurity, misinterpretation, and semantic debates can be avoided by com-
municating some ideas with the assistance of some mathematics.

Moreover, economics is more than economic theory. Most economists
want to address issues that require going beyond economic theory. Since eco-
nomic theory’s laws always are qualitative, never quantitative, no reasonable
estimate or even educated guess can be made about the magnitude of any eco-
nomic effect, unless one is willing to go beyond the realm of pure economic
theory. With theory alone, for example, one cannot assess the employment
effect of a twenty percent hike in the Federal minimum wage. In fact, and con-
trary to what some economists incorrectly believe, one cannot derive even the
sign of the employment effect from only the pure Misesian logic of choice.20

Specific economic functions simply are tools of historical analysis. Their
usefulness in applied economics cannot be decided a priori; it must be judged
by how well they perform their intended use.

The extent to which mathematics can assist the Austrian research pro-
gram is an empirical issue. But there is no reason for Austrians to fear math-
ematics properly used. The rejection of mathematics is neither necessary nor
sufficient for doing good economics. And the use of mathematics is neither
sufficient nor necessary for doing bad economics. What distinguishes Aus-
trian economics from bad economics is the Austrian theoretical hardcore.
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19In 1906, Alfred Marshall wrote: 

I had a growing feeling in the later years of my work at the subject that
a good mathematical theorem dealing with economic hypotheses was
very unlikely to be good economics: and I went more and more on the
rules—(1) Use mathematics as a shorthand language, rather than as an
engine of inquiry. (2) Keep to them until you have done. (3) Translate
into English. (4) Then illustrate by examples that are important in real
life. (5) Burn the mathematics. (6) If you can’t succeed in (4), burn (3).
This last I did often. 

Favorably quoted by many economists, for example by Colander (2001, p. 131), citing the
following source: “From a letter from Marshall to A.L. Bowley, reprinted in A.C. Pigou,
Memorials of Alfred Marshall, p. 427.”

20The Misesian logic of choice tells us that employers will not willingly hire labor
whose marginal hiring cost exceeds its marginal benefit. It does not tell us, however, what
counts as a hiring cost and what counts as a hiring benefit in employers’ minds, or
whether the affected labor markets are competitive or monopsonistic.



APPENDIX A
THE COBB-DOUGLAS PRODUCTION FUNCTION’S LIMITATIONS

In its traditional form, the Cobb-Douglas production function is written  Q =
AKαLβ, where Q is output, and K and L are real capital and labor inputs,
respectively. It can also be written more generally, for one output q produced
by I inputs xi, as:21

q = f(x1, x2, x3, . . . xi, . . . xI) = ax1
α

1x2
α

2x3
α

3 . . . xi
α

i . . . xI
α

I

But in either its traditional or more general form, this specific multiplicative
production function has several seriously unrealistic characteristics.

(a) Because it is multiplicative, if any input quantity is zero, output quantity
is zero, no matter how many other nonzero input variables there are, or
how large their quantities are. Every input is essential.

(b) Because it has only one term, it cannot exhibit positive followed by nega-
tive returns—if using more of a single input initially increases output quan-
tity, using much more of that input cannot decrease output quantity: in a
Cobb-Douglas world, excess fertilizer never could burn plants enough to
decrease corn output.22

(c) Because it is multiplicative with only one term, returns to a single variable
input (holding all other inputs constant) cannot change; they always will
be qualitatively the same. In a Cobb-Douglas production function,
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21In a Cobb-Douglas type (single-term multiplicative) production function, the initial
coefficient (A or a0) and the input exponents (α and β or αi) usually are positive, so that
output increases as the ith input increases. However, if the production process must cope
with production impediments (cotton production in a world containing boll weevils comes
to mind), the impeding variable’s exponent would be negative.

For any single-output multiple-input production function, output quantity q and usu-
ally all input quantities xi are defined as flows (for example, flows of raw materials and
of labor and real capital services) per time period rather than as stocks at a point in time.
But for inputs such as dirt in a production function for housing services or perhaps for
agriculture, or catalyst inputs in an oil refinery, the appropriate input dimension could be
an unchanging stock measured at a point in time.

22However, a Cobb-Douglas type production function can be generalized by adding a
second term: 

q = f(x1, x2, x3, . . . xi, . . . xI) = a0x1
α01x2

α02x3
α03 . . . xi

α0i . . . xI
α0I +  

a1x1
α11x2

α12x3
α13 . . . xi

α1i . . . xI
α1I

If  a1 < 0, negative returns to single inputs become possible. This two-term multi-
plicative function remains homogeneous of degree h (see our note 25), if h = Σα0i = Σα1i,
where the summations are  i = 1, 2, 3, . . . I.



increasing the variable input quantity always will increase output quantity
at either an increasing, a constant, or a decreasing rate. As the one variable
input increases, output quantity never will switch from, say, increasing at
an increasing rate to increasing at a constant or decreasing rate, no matter
how small or large the single variable input quantity is.23 If diminishing
returns occur, they must occur not only eventually but also initially, as
soon as the variable input quantity begins to increase from zero. (Different
inputs can, however, have qualitatively different returns: for example, if
output increases at an increasing rate as input i increases, output may
increase at a decreasing rate as a different input j increases—in each case
changing only one input quantity and holding all other inputs constant.)
In more general production functions,24 “returns” to a single variable input
can change: as a single variable input quantity increases, the rate at which
output increases can switch among increasing, constant, or decreasing.

And because the Cobb-Douglas function is homogeneous,25 it cannot have
inflection points at which the relationship between output quantity and two
or more input quantities can switch among convex, linear, or concave, and it
can have no freestanding additive constant. (The “homogeneity” name comes
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23For any production function, whether a single variable input increases output at an
increasing, constant, or decreasing rate is determined by the sign (positive, zero, or nega-
tive) of the function’s second partial derivative with respect to that input. But for a multi-
plicative function, returns to a single input cannot vary qualitatively, because the sign of
the second partial derivative with respect to an input will always be either positive, zero,
or negative (depending on whether the input’s exponent parameter’s sign is greater than,
equal to, or less than 1), regardless of the variable input’s quantity. [The statement in
parentheses assumes  f(⋅) > 0.]

24Including some homogeneous production functions. (For homogeneity, see our next
note). For specific examples, see the string of thirteen American Economic Review Com-
munications on “Diminishing Returns and Linear Homogeneity,” from Nutter (1963) to
Piron (1966) and Eichhorn (1968). For the complete list, see their references. Also relevant
is Levenson and Solon (1966).

25To define homogeneity, first consider a general (not necessarily homogeneous)
function  q =  f(x1, x2, x3, . . . xi, . . . xI),  with  qo =  f(x1o, x2o, x3o, . . . xio, . . . xIo)  for
any set of specific  xi = xio values.  This function is homogeneous of degree h if and only
if multiplying all xio values by η gives  q =  ηhqo =  ηhf(x1o, x2o, x3o, . . . xio, . . . xIo)  =
f(ηx1o, ηx2o, ηx3o, . . . ηxio, . . . ηxIo). That is, a function is homogeneous of degree h if
and only if ηh can be “factored completely out” of the entire function, when within the
function each independent variable is multiplied by η. Any Cobb-Douglas type (single-
term multiplicative) function always satisfies this condition, with h = α + β or h = Σαi.

In contrast, a polynomial function is homogeneous of degree h only in the special
case that in every term, its variables’ exponents sum to h. To convert an ordinary polyno-
mial to homogeneity of degree h, the coefficients of all terms whose variables’ exponents
do not sum to h must be set to zero (which, assuming h > 0, includes setting the additive
constant term to zero). Homogeneity is very restrictive. An ordinary polynomial, no terms
forced to zero, third degree (cubic) or higher to allow inflections between convex and con-
cave, usually is a much more realistic theoretical representation of almost any production
relationship.



from these “same shape” characteristics.) All homogeneous functions have the
following “returns to scale” properties:

(d) Holding only some (or no) input quantities constant, with an initial mix
of at least two variable inputs, returns to scale for that mix of variable
inputs cannot change: increasing all variable input quantities together (in
fixed proportions) always will increase output quantity at either an
increasing, a constant, or a decreasing rate. As the variable inputs increase
(“scale up”) together, output quantity never will switch from, say, increas-
ing at an increasing rate to increasing at a constant or decreasing rate. For
a given set of constant inputs, returns to scale for the variable inputs
always will be qualitatively the same, no matter how small or large the
fixed-proportion package of variable inputs is.26

(e) Again holding only some (or no) input quantities constant, changing the
initial mix of the variable inputs does not change whether scaling up all
of the variable input quantities increases output at an increasing, con-
stant, or decreasing rate. That is, for a given set of constant inputs, returns
to scale always will be qualitatively the same—increasing, constant, or
decreasing—no matter what mix of variable inputs is “scaled up” in fixed
proportions.27
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26For any production function, to determine its returns to scale, first replace each of
its fixed inputs xi by xi

# (the superscript # denotes a constant value variable), and replace
each of its variable inputs xj that will change only in fixed proportion by ηxjo, where η is
the “scale factor” that will determine how much of the initial mix of variable inputs will
be used. Then the sign of function’s second partial derivative with respect to η (holding
the xi

# and xjo constant) will give the function’s returns to scale, which in general may
vary among increasing, constant, or decreasing, as η increases. But in any homogeneous
function, including the Cobb-Douglas function, this second derivative’s sign is constant
(either positive, zero, or negative), not affected by the magnitude of η.

Geometrically, consider a three-dimensional two-variable-input production function
in the corner of a room. Input space is on the floor. The horizontal x1 and x2 input axes
each are where the floor meets a wall. The vertical q output quantity axis is where the two
walls intersect. In input-space on the floor, the origin at the corner of the room, together
with the point defined by x1o and x2o, define a ray. Changes in the value of scale factor η
move along that ray. Above that ray, in output space, is the output quantity q generated by
different values of η. As η increases, output increases at either an increasing, constant, or
decreasing rate of return to scale. But if the function is homogeneous, the rate of return
to scale never switches from one curvature to another.

27To demonstrate this property for any homogeneous function, including the Cobb-
Douglas function, note from the preceding note’s calculations that the sign of the second
partial derivative of the function with respect to η is not affected by changes in any of the
variable input quantities xjo [assuming f(⋅) remains f(⋅) > 0]. Geometrically, in the preced-
ing note’s three-dimensional room-corner diagram (of a homogeneous production func-
tion), above any ray on the floor, as η increases, output always increases at either an
increasing, constant, or decreasing rate of return to scale, regardless of the ray considered.



(f) And a homogeneous function (of degree h > 0) can have no additive con-
stant term, although such a term (if positive) allows for some minimum
output quantity to be provided by nature, or (if negative, together with a
nonnegativity condition for the function’s output quantity) allows input
quantities to reach some minimum before any output is produced.

Professor Barnett’s “Dimensions and Economics” paper (2004) does not
deal with any of these limitations.28 He focuses his attention on variable and
parameter dimensions (pp. 95, 96–98).29

APPENDIX B
FISHER’S EQUATION OF EXCHANGE,  A DIMENSION FOR EITHER P OR T

In Irving Fisher’s equation of exchange (MV = PT), the left side is the dollar
value of the flow of spending per time period; the right side is the dollar value
of the flow of transaction receipts per time period [what might be called nom-
inal “Gross Gross Domestic (or National) Product,” since Fisher’s equation
includes intermediate transactions among businesses (and, by extension,
among businesses and governments and between both)]. The economy’s gross
spending equals its gross receipts, in dollars (or any other monetary unit).
The dimension units on both sides—dollars/time-period—must match.
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28In an earlier paper, Professor Barnett (2003) does point out two of the above Cobb-
Douglas function characteristics: (a) for production functions and (d) for utility functions
(p. 47, notes 12 and 13 respectively).But we disagree with his claim (note 13) that for a
utility function, “a scale increase of the arguments [that] gives rise to a greater scale
increase in utility . . . [does not accord] with human action.” That statement refers to car-
dinal (vice ordinal) values. It is true (as Barnett says) that any particular utility function’s
dependent variable values, independent variable values, and the results that describe con-
sumer choice actions, all are cardinal. But those cardinal results (behavior and demand
function descriptions) depend only on the utility function values’ ordinal property (larger
values represent preferred bundles). For successively preferred bundles, successive incre-
ments of larger utility values are arbitrary—they can be of any positive size. Thus any
increasing monotonic transformation of a utility function has no effect on the function’s
results that describe consumer choices: its first finite difference quotient (in the limit,
derivative) with respect to scale must be positive, but its second and higher finite differ-
ence quotients (or derivatives) can be of any sign. (Derivatives, of course, require conti-
nuity, a simplifying but often suspect assumption, as Barnett argues on pages 57–59.)

29Professor Barnett does say (2004, p. 95, n. 5), that because a function’s dependent
variable must be unique for any set of independent variable values, “it is incorrect to
express any production relationships [as functions?] in any case in which Leibensteinian
style X-inefficiency can exist.” (See also the macroeconomic model on his page 97, includ-
ing note 12.) We would rather say that the traditional production function describes the
maximum output quantity—not the feasible set of output quantities—that the firm can
obtain from a given set of input quantities. Given such a production function, to describe
not the maximum output quantity but instead the feasible set of output quantities, convert
the production function equation into a relation, by replacing the = sign by a ≤ sign.



On the left side, M is the money stock at a point in time; V is the turnover
of that money stock per time interval (e.g. 30 per year); MV is the stock of dol-
lars times 30/year, which is the flow of dollars spent per year. (After stripping
out the magnitudes of these variables, M’s dimension unit is simply dollars;
V’s dimension unit is 1/year.) So far, no problem.

On the right side, things are not quite that simple. It is tempting to define
price index P as a dimensionless (pure) number ratio of the sums of (quan-
tity weighted) prices for two time periods, and transactions quantity index T
as a dimensionless (pure) number ratio of the sums of (price weighted) trans-
action quantities for two time periods. But if we do that, then multiplying the
two dimensionless numbers P and T gives another dimensionless number,
rather than a flow of gross receipts of dollars per year. 

Therefore, in the equation of exchange, price index P as a dimensionless
pure number ratio and transactions quantity index T as a dimensionless pure
number ratio, cannot hold simultaneously. The solution is that either one or
the other ratio must be multiplied by the flow of nominal transaction quanti-
ties during the base time period, thus making either P or T a dimensioned
index.30

That conclusion applies not only to Fisher’s equation, but also to a “nom-
inal income” equation of exchange (MV = PQ), in which the right side does
not include intermediate transactions but instead is nominal Gross Domestic
(or National) product [Q or sometimes Y being real Gross Domestic (or
National) product], and Velocity is a substantially smaller number than in
Fisher’s equation.

A more detailed and more symbolic version of this argument31 follows.
Let ∆t be the length of a time period, in whatever units time is measured:

if time is measured in years with 52 weeks per year, then a thirteen week time
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30Barnett (2004, pp. 100, 101) mentions that a referee for “a leading English-language
economics journal” wrote Barnett that 

Dimensional analysis can only be applied to laws. . . . Fisher’s relation of
exchange . . . MV = PT . . . is one of the few examples that comes closest
to a law. One result of dimensional analysis is that there is something
odd with this equation. The left part does contain a time dimension,
while the right side doesn’t. This is not something new and can be found
in any textbook.

We see no reason for dimensional analysis to be limited to “laws,” and we wonder how
the referee would define them, and we’d like to see a representative “any textbook,” but
that’s not why we have quoted that referee.

Instead, we suggest that not seeing the right side’s time dimension may result from
assuming that P and T both are dimensionless pure ratios.  The right side’s time dimen-
sion comes from multiplying either the price or transaction ratio by the flow of nominal
transaction quantities during the base period. 

31Based on Boulding (1966, pp. 27–28); and loosely on De Jong (1967, pp. 23–30).



period is ∆t = 0.25 years. A time interval equals or is some multiple of the time
period ∆t.

On Fisher’s left side, M is the money stock at a point in time (at a time
interval’s end; a more general formulation would allow the point in time to be
anywhere in the interval), with its dimension units simply being dollars.
Velocity is the money stock’s average turnover per time period (during the
interval), so it is a number (say 20 times per year, or 5 times per quarter), with
dimension units 1/period.  Multiplying M by V gives left side dimension units
of dollars/time period.

On Fisher’s right side, P is a price index, and T is a transactions quantity
index. Let pj and qj represent the price and quantity of the jth transaction, and
superscripts b and e respectively represent the base period and end period
within the interval. Assume P is a Laspeyres index (base period quantity
weights).  Then the end period dollar value of the flow of transaction receipts
per time period is: PT = Σpj

eqj
e, where

P = Σpj
eqj

b / Σpj
bqj

b,  and 
T = [Σpj

eqj
e / Σpj

eqj
b]⋅Σpj

bqj
b. 

The transactions index T, rather than being a pure ratio, has been rede-
fined into a dimensioned index. 

Alternatively, the Laspeyres price index P could be redefined into a dimen-
sioned index as P = [Σpj

eqj
b / Σpj

bqj
b]⋅Σpj

bqj
b = Σpj

eqj
b,  so that T would be a

pure ratio.
Analogous results hold if P is a Paasche price index (end period quantity

weights), and T is defined accordingly (the final factor of either T or P again
is Σpj

bqj
b).
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